

Novel ¹⁹F MRS/I Nanoprobe Based on pH-Responsive PEGylated Nanogel: pH-Dependent ¹⁹F Magnetic Resonance Studies

Motoi Oishi,^{1,2,3} Shogo Sumitani,¹ Tatiana K. Bronich,^{6,7} Alexander V. Kabanov,^{*6,7}
Michael D. Boska,^{*7,8,9} and Yukio Nagasaki^{*1,2,3,4,5}

¹Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573

²Tsukuba Research Center for Interdisciplinary Materials Science (TIMS),
University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573

³Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573

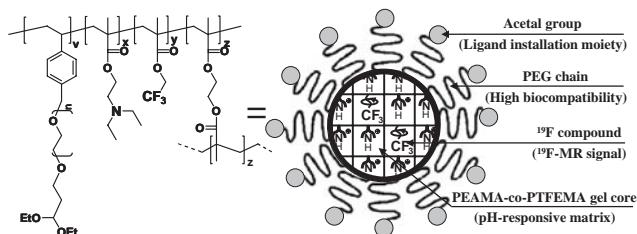
⁴Master's School of Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573

⁵International Center for Materials Nanoarchitectonics Satellite (MANA), National Institute for Materials Science (NIMS)
and University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573

⁶Departments of Pharmaceutical Sciences, University of Nebraska Medical Center,
985830 Nebraska Medical Center, Omaha, Nebraska 68198-5830, USA

⁷Centers for Drug Delivery and Nanomedicine, University of Nebraska Medical Center,
985830 Nebraska Medical Center, Omaha, Nebraska 68198-5830, USA

⁸Department of Radiology, University of Nebraska Medical Center,
985830 Nebraska Medical Center, Omaha, Nebraska 68198-5830, USA


⁹Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center,
985830 Nebraska Medical Center, Omaha, Nebraska 68198-5830, USA

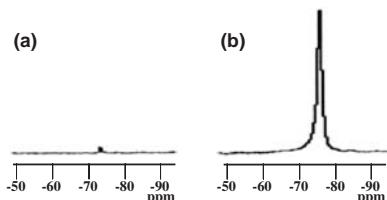
(Received October 9, 2008; CL-080971; E-mail: nagasaki@nagalabo.jp)

The pH-responsive PEGylated nanogels composed of the cross-linked poly[2-(*N,N*-diethylamino)ethyl methacrylate]-*co*-poly(2,2,2-trifluoroethyl methacrylate) gel core showed a remarkable on-off regulation of ¹⁹F magnetic resonance signal intensity (*T*₂ values) as well as signal-to-noise ratios in response to extracellular pH 6.5 of tumor environment under ¹⁹F magnetic resonance spectroscopic imaging (MRS/I), demonstrating the utility of the PEGylated nanogels as solid tumor-specific ¹⁹F MRI/S nanoprobes.

¹⁹F magnetic resonance spectroscopic imaging (¹⁹F MRS/I) has been recognized as a powerful and noninvasive methodology for diagnosis of cancer, because there is no endogenous ¹⁹F in the body that might be a source of background noise. Additionally, ¹⁹F is 100% naturally abundant and has MR sensitivity nearly as high as that of protons.¹ Since long circulating nanosized (<100 nm) and PEGylated species² have been reported to accumulate in solid tumors through the enhanced permeability and retention (EPR) effect,³ an important goal in tumor imaging is development of PEGylated ¹⁹F nanoprobes. Furthermore, the extracellular pH of the tumor environment is usually 0.4 to 1.0 pH units lower than the physiological pH 7.4.⁴ The ¹⁹F MRS/I of tumors can be further improved by designing pH-responsive ¹⁹F-nanoprobes that attenuate the ¹⁹F MR signal outside of the tumor and switch on the signal inside the tumor.

In this regard, we recently first reported the preparation of pH-responsive and PEGylated ¹⁹F nanoprobes based on PEGylated nanogels consisting of 1) a cross-linked poly[2-(*N,N*-diethylamino)ethyl methacrylate]-*co*-poly(2,2,2-trifluoroethyl methacrylate) (PEAMA-*co*-PTFEMA) gel core and 2) tethered PEG chains that bear an acetal group as a platform for installation of tumor-specific ligand molecules (Figure 1).⁵ These pH-responsive nanoprobes showed remarkable activation of ¹⁹F MR signals upon change of pH 7.4 to pH 6.5 even in the presence

Figure 1. Schematic illustration of tumor-specific nanoprobe for ¹⁹F MRS/I based on the pH-responsive PEGylated nanogels.


of 90% fetal bovine serum. The pH-dependent behavior of the PEGylated nanogel probes may result from the swelling (volume phase transition) of the gel core at acidic pH that leads to an increase in molecular motion of the ¹⁹F atoms and longer *T*₂ (spin-spin) relaxation times. To validate this hypothesis the present study investigates the ¹⁹F MR signals including *T*₁ (spin-lattice) and *T*₂ relaxation times and phantom of the nanogel probes and discusses the relevance of these characteristics to ¹⁹F MRS/I of tumors. All together, based on these systematic measurements, we gain important insight into “on-off” regulation of the ¹⁹F MR signals induced by the volume phase transition of the gel core in response to pH.

The pH-responsive PEGylated nanogel was prepared by emulsion copolymerization of EAMA (pH-responsive component), TFEMA (¹⁹F compound), and PEG macromonomer bearing an acetal group at the α -end and a 4-vinylbenzyl group at the ω -end (acetal-PEG-Ph-CH=CH: $M_n = 5030$, $M_w/M_n = 1.04$) in the presence of ethylene glycol dimethacrylate (1.0 mol %) as a crosslinker. The emulsion copolymerization was carried out at a feed ratio of EAMA:TFEMA = 90:10 (mol %), since the highest ¹⁹F MR signal intensity at extracellular pH 6.5 of the tumor environment was observed for the PEGylated nanogel containing PEAMA-*co*-PTFEMA gel core (90:10 mol %).⁵ By decreasing the pH from 7.4 to 7.0, the

Table 1. Size, T_1 and T_2 relaxation times of ^{19}F for the pH-responsive PEGylated nanogels at pH 7.4, 6.5, and 5.5

pH	Diameter/nm ^a	T_1 /ms	T_2 /ms	S/N ^b
7.4	52	<30	<1	≈0
6.5	107	280	56.8	7.63
5.5	109	304	53.2	5.75

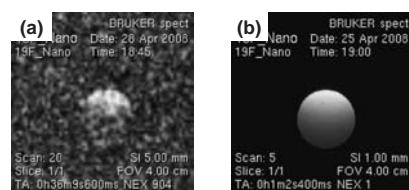

^aDetermined by DLS measurement. ^bCalculated from phantom images.

Figure 2. ^{19}F MR spectra of the pH-responsive PEGylated nanogels at (a) pH 7.4 and (b) pH 6.5.

diameter of the PEGylated nanogel increased proportionally with a unimodal size distribution ($\mu_2/\Gamma^2 < 0.19$), reaching 8.7-fold larger hydrodynamic volume at the extracellular pH 6.5 of tumor environments compared to that at the physiological pH 7.4, as shown in Table 1. This pH-induced size variation of the PEGylated nanogel was due to an increase in the ion osmotic pressure and solvation of the gel core caused by protonation of the amino groups in the PEAMA segment.^{5,6} Figure 2 shows the ^{19}F MR spectra of the PEGylated nanogels ($[^{19}\text{F}] = 500 \mu\text{M}$), as measured by ^{19}F MRS/I (7.0 T) at the physiological pH 7.4 and extracellular pH 6.5 of the tumor environment. T_1 and T_2 relaxation times of ^{19}F for the PEGylated nanogels at pH 7.4, 6.5, and endosomal/lysosomal pH 5.5⁷ are also summarized in Table 1. Note that almost no narrow line width ^{19}F MR signals were observed at physiological pH 7.4 (Figure 2a). At this pH, the gel core collapsed to hydrophobic core as a result of the deprotonation of the amino groups. Furthermore, T_2 was found to be too short (T_2 estimated to be 100 μs based on signal linewidth), viz., the absence of ^{19}F MR signals is due to the broadening effect caused by the limited molecular motion of the ^{19}F compounds in the hydrophobic (solid-state) core.⁸ In sharp contrast, the PEGylated nanogels (Figure 2b) showed clear ^{19}F MR signals at pH 6.5 along with a very broad peak not visible using normal imaging methods. The pronounced ^{19}F MR signals are due to the swelling as well as solvation of the gel core in response to acidic pH, leading to the increase in the molecular motion of the ^{19}F compounds. Indeed, T_2 values of the PEGylated nanogels at pH 6.5 and 5.5 were significantly longer than that at pH 7.4. Note that these facts are in accordance with the size variation of the PEGylated nanogels as function of pH. Thus, complete on-off regulation of T_2 values (^{19}F MR signal intensity) by the pH-responsive PEGylated nanogel are remarkable characteristics for the tumor-specific ^{19}F MRS/I nanoprobes.

Figure 3 shows the phantom images of both ^{19}F MRS/I for the PEGylated nanogels at pH 6.5 and ^1H MRI of the water as a reference obtained using the same volume coil transmit and surface coil receive system retuned to the ^1H frequency.⁹ Since the signal at the top surface is stronger than that at the bottom for ^{19}F and ^1H phantom images arising from the reception profile of

Figure 3. (a) ^{19}F MRI of the phantom containing the pH-responsive PEGylated nanogels at pH 6.5 ($[^{19}\text{F}] = 500 \mu\text{M}$). (b) ^1H MRI of the phantom of water as a reference.

the surface coil, the signal-to-noise (S/N) ratios at the top surface of the images for the PEGylated nanogels at pH 7.4, 6.5, and 5.5 were measured to be ca. 0, 7.63, and 5.75, respectively. Significant increase in the S/N ratios in response to pH 6.5 and 5.5 is remarkable, which means that the PEGylated nanogels can be used for tumor-specific ^{19}F MRS/I nanoprobes.

In conclusion, the pH-responsive PEGylated nanogels showed a remarkable on-off regulation of T_2 values of ^{19}F as well as S/N ratio in response to the extracellular pH 6.5 of the tumor environment, indicating that the pH-responsive PEGylated nanogels are a promising approach to the creation of tumor-specific ^{19}F MRS/I nanoprobes to be used *in vivo*.

This work was partially supported by a Grant-in-Aid for Scientific Research (A) (No. 1800033), Overseas Advanced Education Research Practice Support Program and World Premier International Research Center Initiative Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) as well as by the United States Department of Defense grant (No. USAMRMC 06108004).

References and Notes

- 1 J.-X. Yu, V. D. Kodibagkar, W. Cui, R. P. Mason, *Curr. Med. Chem.* **2005**, *12*, 819.
- 2 a) H. Otsuka, Y. Nagasaki, K. Kataoka, *Adv. Drug Delivery Rev.* **2003**, *55*, 403. b) P. Lemieux, S. V. Vinogradov, C. L. Gebhart, N. Guerin, G. Paradis, H.-K. Nguyen, B. Ochietti, Y. G. Suzdaltseva, E. V. Bartakova, T. K. Bronich, Y. St-Pierre, V. Y. Alakhov, A. V. Kabanov, *J. Drug Target.* **2000**, *8*, 91.
- 3 Y. Matsumura, H. Maeda, *Cancer Res.* **1986**, *46*, 6387.
- 4 a) J. Wike-Hooley, J. Haveman, H. Reinhold, *Radiother. Oncol.* **1984**, *2*, 343. b) L. E. Gerweck, K. Seetharaman, *Cancer Res.* **1996**, *56*, 1194.
- 5 M. Oishi, S. Sumitani, Y. Nagasaki, *Bioconjugate Chem.* **2007**, *18*, 1379.
- 6 a) M. Oishi, Y. Nagasaki, *React. Funct. Polym.* **2007**, *67*, 1311. b) M. Oishi, H. Hayashi, M. Iijima, Y. Nagasaki, *J. Mater. Chem.* **2007**, *17*, 3720. c) M. Oishi, N. Miyagawa, T. Sakura, Y. Nagasaki, *React. Funct. Polym.* **2007**, *67*, 662. d) M. Oishi, H. Hayashi, T. Uno, T. Ishii, M. Iijima, Y. Nagasaki, *Macromol. Chem. Phys.* **2007**, *208*, 1176. e) M. Oishi, H. Hayashi, K. Itaka, K. Kataoka, Y. Nagasaki, *Colloid Polym. Sci.* **2007**, *285*, 1055. f) H. Hayashi, M. Iijima, K. Kataoka, Y. Nagasaki, *Macromolecules* **2004**, *37*, 5389.
- 7 a) J. Gruenberg, *Nat. Rev. Mol. Cell Biol.* **2001**, *2*, 721. b) S. Mukherjee, R. N. Ghosh, E. R. Maxfield, *Physiol. Rev.* **1997**, *77*, 759. c) R. Duncan, *Anti-Cancer Drugs* **1992**, *3*, 175.
- 8 a) S. Bontha, A. V. Kabanov, T. K. Bronich, *J. Controlled Release* **2006**, *114*, 163. b) V. Büttün, N. C. Billingham, S. P. Armes, *J. Am. Chem. Soc.* **1998**, *120*, 11818.
- 9 Supporting Information is available electronically on the CSJ Journal Web site, <http://www.csj.jp/journals/chem-lett/index.html>.